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We derive macroscopic equations of motion for the slowly varying electric field amplitude in three-dimensional
active nonlinear optical nanostructures. We show that the microscopic Maxwell equations and polarization dynam-
ics can be simplified to a macroscopic one-dimensional problem in the direction of group velocity. For a three-level
active material, we derive the steady-state equations for normal mode frequency, threshold pumping, nonlinear
Bloch mode amplitude, and lasing in photonic crystals. Our analytical results accurately recapture the results
of exact numerical methods. © 2013 Optical Society of America
OCIS codes: (050.5298) Photonic crystals; (190.0190) Nonlinear optics.
http://dx.doi.org/10.1364/OL.38.003514

Complex optical nanostructures such as photonic crys-
tals (PCs) and PC-based devices can be doped with ac-
tive constituents to produce nonlinear functionalities,
such as lasing [1–4] or switching [5]. Active optical nano-
structures can be modeled exactly using time-domain
[3–5] or self-consistent frequency-domain methods [6,7].
The exact microscopic methods are time consuming (es-
pecially for a 3D structure) and do not provide a simple
physical picture of the macroscopic nonlinear response.
In this Letter, we provide a semi-analytical treatment of
transient and steady-state response of 3D active optical
nanostructures. Our semi-analytical treatment is not a
perturbative approach [8] and is able to accurately recap-
ture the results of more exact microscopic methods.
We assume the active optical nanostructure consists of

a passive dielectric backbone structure and a region
doped with active materials [6]. The dielectric function
of the backbone structure is taken as ε�r�, where r is
the position vector. The modes of the passive dielectric
backbone structure satisfy the time-independent
Maxwell equation,

∇ ×∇ × ψm�r� − �ω2
m∕c2�ε�r�ψm�r� � 0; (1)

where ψm�r� is the mode of the backbone with frequency
ωm. In order to model the transient and steady-state
behaviors of the active nanostructure, we model the ac-
tive region with a complex nonlinear susceptibility χ�r; t�
that varies slowly in time, t (compared with the optical
period). Further, we assume the active material has only
one resonance frequency for the radiative transitions.
Assuming the resonance frequency of the active material
is close to one of the backbone-mode frequencies (let say
ωm), we can write the electric field and polarization in the
active optical nanostructure as

E�r; t� � A�r; t�ψ�r�e−iωt; (2)

P�r; t� � B�r; t�ψ�r�e−iωt; (3)

where ω is the frequency of light, and A (B) is a slowly
varying electric field (polarization) amplitude. In writing
Eqs. (2) and (3), we neglect the coupling between various
backbone modes, and we suppress the subscript m in
ψm�r�. This assumption is justified below under suitable
circumstances.

The electric field and polarization in Eqs. (2) and (3)
obey the general time-dependent Maxwell equations,
∇ × E � μ0∂H∕∂t and ∇ ×H � σ�r�E� ε0ε�r�∂E∕∂t�
η�r�∂P∕∂t, where H is the magnetic field, σ�r� is the con-
ductivity that accounts for various losses (scattering,
absorption, and finite sample size effects), and η�r� is the
dimensionless function describing the location of the ac-
tive material. The function η�r� � 1, if active constituents
are present at position r and zero otherwise. To prevent
the coupling between various modes of the backbone
structure, the function η�r� is assumed to have the same
symmetry as ε�r�. η�r� can be nonzero both inside and
outside the passive dielectric backbone.

Eliminating the magnetic field from the Maxwell
equations, we have

∇ ×∇ × E�r; t� � ε�r�
c2

∂2E�r; t�
∂t2

� μ0σ�r�
∂E�r; t�

∂t
� μ0η�r�

∂2P�r; t�
∂t2

� 0: (4)

In order to obtain the equation of motion for A, we
insert Eqs. (2) and (3) into Eq. (4) and impose an
adiabatic limit. In the adiabatic limit, ∂B∕∂t ≈ 0 and
B�r; t� � ε0χ�r; t�A�r; t�. This approximation is valid
when the polarization relaxation time is much shorter
than the population decay time, as found in many physi-
cal systems [8–10]. For more details on adiabatic limits
please see, for e.g., Refs. [9,10]. In the adiabatic limit,
∂B∕∂t ≈ 0 and B�r; t� � ε0χ�r; t�A�r; t�. Assuming a small
loss and neglecting the second-order terms (second-
order derivatives of A, and term with σ∂A∕∂t [10–12]),
Eq. (4) becomes
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∇A ×∇ × ψ � �∇A�∇ · ψ − �∇A ·∇�ψ

� 2iω

c2
εψ

∂A
∂t

� ω2

c2
ψA�iγ � ηχ � δε�: (5)

In Eq. (5), apart from χ, we have dimensionless quantities
γ � σ∕�ε0ω� and δ � 1 − ω2

m∕ω2, quantifying the loss and
the frequency detuning, respectively. In order to arrive at
Eq. (5) from Eq. (4), we simplified the term ∇ ×∇ × E �
∇ ×∇ × �ψA� in Eq. (4) using the vector identities: ∇ ×
uV≡∇u × V� u∇ × V and ∇ × �U × V�≡ U�∇ · V� −
V�∇ · U� � �U ·∇�V − �V ·∇�U for a scalar function, u
and vectors U and V. If we dot product the complex con-
jugate of ψ on the left-hand side of Eq. (5), it follows that
the dot product ψ� · �∇A ×∇ × ψ � �∇A�∇ · ψ − �∇A ·
∇�ψ� becomes q ·∇A, where the Cartesian components
of q≡ q�ψ;ψ�� in repeated index summation convention
can be written as ql � ψ�

l ∂jψ j − 2ψ�
j ∂lψ j � ψ�

j ∂jψ l, with
∂i � ∂∕∂xj. Here, the vector q is physically significant.
The direction of q is the direction of group velocity,
and the spatial average of q is directly related to the
group velocity vg � �ic2∕2ω� R∞

−∞ qd3r. This expression
for the group velocity is identical to the one obtained
using a 3D k · p perturbation theory [13]. Equation (5)
now reduces to

i
c2

2ω
q ·∇A� εψ2 ∂A

∂t
� −

ω

2
�iγ � ηχ � δε�Aψ2: (6)

Equation (6) describes the evolution of A both in time
and space. If we choose our z axis parallel to the group
velocity (i.e., q), then the directional derivative q ·∇A is
proportional to ∂A∕∂z, reducing the original 3D problem
[Eq. (4)] to a simpler 1D problem. Equation (6) can be
discretized and solved using the first-order finite differ-
ence schemes, which is much easier than directly solving
Eq. (4) [3,4]. It is likewise straightforward to generalize
Eq. (6) to situations where Eqs. (2) and (3) involve an
expansion over many coupled backbone modes.
If we further assume that the spatial variation of A is on

much longer scales than the spatial variation of ψ , then
we can further simplify Eq. (6) by spatial averaging

vg ·∇A� ∂A
∂t

� −
ω

2
fihγψ2i � hηχψ2i � δgA: (7)

In a PC, h…i denotes �1∕Vuc�
R
uc�…�d3r, where Vuc is

the unit cell volume. In deriving Eq. (7), we use the
normalization hεψ2i � 1.
The dynamic Eqs. (6) and (7) are coupled to the equa-

tion of motion for χ. In the case of active semiconductors,
χ is directly proportional to the number of free carriers
and is governed by semiconductor Bloch equations or
rate equations [14]. For active plasmonic materials, the
dynamic equation for χ can be obtained from particle-
in-cell methods [15]. In the case of two-level atoms or
quantum dots, the dynamic equation of χ is described by
the two-level optical Bloch equations [4,5,9,16], whereas
for a general multilevel active dopant, χ can be derived
from the density matrix equations. Our simplified formal-
ism, however, requires that there is only one radiative
transition with strong coupling to our selected backbone

optical mode, whereas any other radiative transitions are
weak [9].

We now consider the steady-state response of the mac-
roscopic amplitude A under steady-state pumping condi-
tions. In order to prevent the amplitude A from growing
exponentially, the term on the right-hand side of Eq. (7)
should be zero: ihγψ2i � hηχψ2i � δ � 0. By separating
the imaginary (Im) and real (Re) parts of χ, we find
the steady-state conditions:

hγψ2i � hη Im�χ�ψ2i � 0; hηRe�χ�ψ2i � δ � 0: (8)

For a specific illustration, consider a PC doped with ac-
tive three-level atoms. Each active dopant is excited from
level 1 to level 3 by means of an external pump [Fig. 1(a)].
Level 3 is assumed to nonradiatively decay rapidly to
level 2. Radiation takes place between levels 2 and 1 with
a frequency ω0. The complex susceptibility for such a
three-level active medium is [6,7,16]:

χ�r� � g0

�
p− 1
p� 1

� �ω−ω0�T2 − i

1� ��ω−ω0�T2�2 �A2ψ2�r�∕�Is�p� 1��
;

(9)

where p is the pumping, defined as the ratio of pumping
rate from level 1 to level 3 to the decay rate from level 2 to
level 1, T1. In Eq. (9), g0 is the maximum gain, and Is is
the saturation intensity. The expressions for g0 and Is are
d20T2NT∕�ε0ℏ� and ℏ2∕�4d20T1T2�, respectively. In these
expressions, d0 is the transition dipole matrix element,
T2 is the atomic dephasing time, NT is the total density
of the dopants, ε0 is vacuum permittivity, and ℏ is
Planck’s constant divided by 2π. From Eq. (9), we can
see that the imaginary and the real parts of the suscep-
tibility are related through Re�χ� � −�ω − ω0�T2 Im�χ�.
Using this relation and Eq. (9), we can reduce the
conditions in Eq. (8) to

Fig. 1. (a) Schematic of 2D PC and the active dopant. (b) The
band structure of E polarization. The insets shows the magni-
tude of the magnetic field (whose components are in the 2D
periodic plane) for the modes at the X point. The modes at
X are labeled with their symmetry representations. (c) The gain
line shape function of Er3� (red curve), and for an active
medium that has 1000 times larger line width than that of
Er3� (dark blue). (d) The intensity ratio as a function of pump-
ing for the first Bloch mode (with symmetry representation A1).
Blue line: exact self-consistent method [5]; open circles: pertur-
bation theory [6]; triangles: presented method.
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ω2
m∕ω2 � 1� �ω − ω0�hγψ2iT2: (10)

The density of the dopants is in the excited state (i.e.,
level 2)N � NT�p − 1�∕�p� 1�. The minimumN required
for gain to offset loss, and hence induce a steady-state
lasing, is defined as the threshold dopant density, N th.
The expression for N th can be obtained from the first
condition in Eqs. (8) and (9) with A � 0:

N th � hγψ2i
g0hηψ2i �1� �ω − ω0�2T2

2�: (11)

From Eq. (10), we can see that the steady-state mode
frequency,ω, does not depend on the pumping level,
but does depend on the loss, [or equivalently on N th,
see Eq. (11)]. Since increased pumping will increase
the real part of the susceptibility, it is possible that the
frequency, ω, of the active mode should likewise change
with pumping. The real part of the susceptibility depends
on the steady-state population inversion density (Eq. (9)].
In steady state, for pumping beyond threshold, increasing
the pumping value does not change the population inver-
sion density significantly. Instead, energy from the pump-
ing simply deposits more light in the nonlinear Bloch
mode (i.e., increase the amplitude A). Therefore, in
steady state, the population inversion density remains ap-
proximately equal to N th. Consequently, steady-state
frequency,ω, remains almost independent of pumping
but depends primarily on the loss in the system as seen
in Eq. (10). Moreover, when the loss in the system is
zero, then N th � 0 (no change in the susceptibilities),
and therefore ω � ωm. Once NTH is known, the threshold
pumping is then obtained from pth � �NT � N th�∕
�NT − N th�. For p > pth, the steady-state value of A is ob-
tained from the nonlinear integral equation:

hγψ2i�p� 1�
g0�p − 1� �

�
ηψ2

1� ��ω − ω0�T2�2 � A2ψ2�r�∕Is�p� 1�

�
:

(12)

Equations 10 through 12 provide excellent approxima-
tions for the nonlinear Bloch mode [6,7] frequency and
amplitude as well as the threshold pumping for lasing
in PCs with three-level active dopants.
We now compare our semi-analytical results with the

results of the exact self-consistent method demonstrated
in [6]. The active nonlinear structure in [6] consists of a
2D square lattice PC doped with erbium ions (Er3�)
[Fig. 1(a)] with only E polarized (electric field along
the axis of rods) light. The 2D PC is made of circular sil-
icon rods (dielectric constant � 12.1 and a radius-to-
period ratio of 0.3) in a silicon dioxide matrix
(dielectric constant � 2.1). The band structure of the
backbone PC along the Γ-X direction is shown in
Fig. 1(b). Er3� ions with the following parameters: g0 �
5.9 × 10−5 at density NT � 1 × 1019 cm−3, resonance
wavelength, λ0 � 1.5 microns, and T2 � 5.6 ps, are
doped in the SiO2 matrix region. The loss in the
silicon rods (due to out-of-plane scattering and impurity
absorption) is parameterized by γ � 1 × 10−5. For
suitable pumping conditions, lasing takes place along

the Γ-X direction at the band edge (X). We choose the
PC lattice constant, a, such that the resonance frequency,
ω0 � a∕λ0, is close (within one full width at half-
maximum) to the first band edge at X with ωm � 0.1856.
The gain line shape function (related to Im�χ� for A � 0),
g � 1∕f1� ��ω − ω0�T2�2g, of Er3� is plotted in Fig. 1(c).

Before proceeding, we justify the single-mode
assumption made earlier. The magnitude of the gain line
shape function (g) is an indicator of the coupling strength
of our dopants to modes of the backbone PC. On the
other hand, the coupling between different backbone
modes induced by the active medium is strongly depen-
dent on the symmetry of the modes. It was shown previ-
ously [6] that Bloch modes with different wave-vectors
remain uncoupled provided that the active medium
has the same translational symmetry as the backbone.
The same is true for the point group symmetries. In
Fig. 1(b), the X -point modes are labeled with their re-
spective symmetry representation [17]. The symmetry
representation tells us whether the mode is symmetric or
antisymmetric with respect to the symmetry operations
of the point group at X . For example, the modes with A1
representation are symmetric with respect to all sym-
metry operations (identity, 180° rotation, mirror opera-
tions along horizontal and vertical axes) of the point
group C2v (the symmetry group of X). It can be shown
that only modes with the same symmetry representation
couple to each other [18]. As we can see from Fig. 1(c),
the line width of Er3� is very narrow, and thus the cou-
pling to all other modes with the same Bloch wave-vector
is correspondingly small. Although the second and third
bands have finite g values, these neighboring modes do
not have the same symmetry representation as the
lowest band edge mode. Consequently, these neighbor-
ing modes will not couple to the first band edge mode.
Among the first six bands, only the band edge mode of
the fourth band has the same symmetry as that of the first
band. However, the coupling strength to this band (due to
the narrow dopant linewidth) is nearly zero. Therefore,
the single-mode assumption is valid for any practical
purposes in this example.

The presented transient and steady-state Eqs. (7) and
(8) work very well provided that the single-mode
assumption is justified. A straightforward multimode gen-
eralization is required if (1) the symmetries of the active
medium (both translational and point group) are not the
same as those of the backbone structure or (2) an in
homogenous linewidth of active dopants or gain rate is
a significant fraction of the spectral separation between
modes of the same symmetry.

In Fig. 1(d), we compare the result of exact computa-
tion [6] (blue line) to the solutions of Eq. (12) (triangles)
for the intensity ratio (A2∕Is). Clearly, there is near per-
fect agreement between the two methods. Whereas the
exact method involves self-consistent diagonalization
of a large matrix, Eq. (12) is simply solved using a bisec-
tion method. The value of pth is also analytically obtained
from Eq. (11). This is simpler than the exact method,
where pth is found by an iterative numerical approach.
For comparison, we also plot the result of a multiscale
perturbation theory [8] (circles) in Fig. 1(d). Clearly,
the perturbation theory is only valid near threshold as
expected.
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In conclusion, we have demonstrated a simple
semi-analytical technique to accurately describe a macro-
scopic response in active nonlinear optical nanostruc-
tures. This simplifies the description of nonlinear
Bloch waves and lasing in 2D and 3D PCs to an effective
1D problem for the slowly varying, macroscopic, wave
amplitudes. Our method recaptures previous self-
consistent iterative solutions [6] of microscopic wave
equations in periodic media with frequency-dependent,
nonlinear, dielectric functions, exhibiting gain and loss.
Our approach provides a vital method in more complex
nanostructures, such as electrically pumped 3D metallic,
PC, filaments [19] and PC solar cells [20] with electron-
hole luminescence (photon-recycling) effects. In both
systems, nonlinear Bloch waves and lasing may arise
with sufficiently strong pumping, but exact microscopic
treatments are prohibitively time-consuming.

This work was supported by the United States Depart-
ment of Energy under contract DE-FG02-10ER46754, the
Agency for Science, Technology and Research (A-STAR)
of Singapore, and the Natural Sciences and Engineering
Council of Canada.

References and Note

1. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris,
E. E. Hallerm, and J. Vučković, Nat. Photonics 5, 297
(2011).

2. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A.
Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D.
Bouwmeester, Phys. Rev. Lett. 96, 127404 (2006).

3. P. Bermel, E. Lidorikis, Y. Fink, and J. D. Joannopoulos,
Phys. Rev. B 73, 165125 (2006).

4. S. L. Chua, Y. Chong, A. D. Stone, M. Soljacic, and J. B.
Abad, Opt. Express 19, 1539 (2011).

5. H. Takeda and S. John, Phys. Rev. A 83, 053811 (2011).
6. A. Kaso and S. John, Phys. Rev. E 74, 046611 (2006).
7. A. Kaso and S. John, Phys. Rev. A 76, 053838 (2007).
8. L. Florescu, K. Busch, and S. John, J. Opt. Soc. Am. B 19,

2215 (2002).
9. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008),

Chap. 3.
10. M. Sargent III, M. O. Scully, and W. E. Lamb, Laser Physics

(Addison-Wesley, Reading, Mass, 1977), Chap. 8.
11. A. E. Siegman, Lasers (University Science Books, 1986),

Chap. 24, Sect. 4.
12. In the semiclassical laser theory ∂A∕∂t and the loss (σ) are

both assumed one order smaller than ωA and are referred
to as first-order terms (Refs. [10,11]). Their product, A∕∂t, is
a second-order term that can be neglected. A more system-
atic ordering and elimination of second-order terms can be
accomplished by a multiscale expansion method as
discussed in [8].

13. C. M. de Sterke and J. E. Sipe, Phys. Rev. A 38, 5149 (1988).
14. C. M. Bowden and G. P. Agrawal, Opt. Commun. 100, 147

(1993).
15. Y. C. Lan, Appl. Phys. Lett. 88, 071109 (2006).
16. P. W. Milonni and J. H. Eberly, Laser Physics, 2nd ed.

(Wiley, 2010).
17. K. Sakoda, Phys. Rev. B 52, 7982 (1995).
18. J. F. Cornwell, Group Theory in Physics (Academic, 1997).
19. S. John and R. Wang, Phys. Rev. A 78, 043809 (2008).
20. S. Eyderman, S. John, and A. Deinega, J. Appl. Phys. 113,

154315 (2013).

September 15, 2013 / Vol. 38, No. 18 / OPTICS LETTERS 3517


